16 research outputs found

    A Mixed Method for Axisymmetric Div-Curl Systems

    Get PDF
    We present a mixed method for a three-dimensional axisymmetric div-curl system reduced to a two-dimensional computational domain via cylindrical coordinates. We show that when the meridian axisymmetric Maxwell problem is approximated by a mixed method using the lowest order Nédélec elements (for the vector variable) and linear elements (for the Lagrange multiplier), one obtains optimal error estimates in certain weighted Sobolev norms. The main ingredient of the analysis is a sequence of projectors in the weighted norms satisfying some commutativity properties

    MULTIGRID IN A WEIGHTED SPACE ARISING FROM AXISYMMETRIC ELECTROMAGNETICS

    Get PDF
    Abstract. Consider the space of two-dimensional vector functions whose components and curl are square integrable with respect to the degenerate weight given by the radial variable. This space arises naturally when modeling electromagnetic problems under axial symmetry and performing a dimension reduction via cylindrical coordinates. We prove that the multigrid V-cycle applied to the inner product in this space converges, provided certain modern smoothers are used. For the convergence analysis, we first prove several intermediate results, e.g., the approximation properties of a commuting projector in weighted norms, and a superconvergence estimate for a dual mixed method in weighted spaces. The uniformity of the multigrid convergence rate with respect to meshsize is then established theoretically and illustrated through numerical experiments. 1

    A mixed method for axisymmetric div-curl systems

    No full text
    corecore